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I.  Introduction

The overall goal of this program has been the development of novel light emitting optoelectronics and
photonic devices.  We have investigated MBE-grown GaN thin films doped with rare earth (RE) species for
emission of light over a wide wavelength range from the near-ultraviolet to the near-infrared.  In this final
report we review our research with the incorporation of trivalent rare earth (RE3+) elements into GaN films
and resulting light emitting devices.  GaN is a wide bandgap semiconductor that is intensely investigated1 for
optical and electronic applications.  The lanthanide elements, commonly known as the “rare earths” (RE),
have been an increasingly important ingredient in a variety of photonic applications2, ranging from solid-state
lasers to color displays to optical fiber telecommunications.  RE elements have a partially filled inner (4f n)
shell shielded from its surroundings by complete filled outer (5s2 and 5p6) outer orbitals.  This results in
optical emission of very sharp lines at wavelengths from the UV to the IR which are relatively independent of
the host material and are determined by the energy of the transition between 4f states of the RE.  While the host
material has a weak influence on the emission wavelength, it does have a very strong effect on the radiative
transition probability.  In general, doping of conventional semiconductors (Si, GaAs, etc.) with REs has
suffered from limited solubility and severe temperature quenching, which has made the room temperature
operation impractical.

II.  Optical Emission Characteristics

At Cincinnati, we have obtained for the first time photoemission from higher excited RE states in GaN
covering the entire visible spectrum: light emission in the green3,4,5 (from Er at 537/558 nm), red6,7 (Pr at 650
nm, Eu at 621nm), and blue8 (Tm at 477 nm).  Emission in the near-infrared (IR) was also obtained at 801 nm
from Tm8, at 1000 and 1540 nm from Er5, and at 956, 1303 and 1914 nm from Pr6.  The rare earths were
introduced during growth of the GaN layer by MBE on either sapphire or Si substrates.  Fig. 1 shows
emission spectra from electroluminescent devices (ELD) for GaN doped with Tm, Er, and Eu and a
photoluminescent (PL) spectrum from Pr-doped GaN.  Also shown in Fig. 1 is the intrinsic GaN characteristic
emission in the ultraviolet part of the spectrum at ~365 nm.  The primary visible colors emitted by GaN ELDs
doped with these individual REs are very “pure” and match very well the CIE coordinates adopted by the
National Television System Committee (NTSC).  In addition to the pure colors, mixed colors have been
obtained by co-doping GaN films with a combination of REs.  As discussed in more detail below, GaN:RE
ELDs have been developed which emit in a variety of pure and mixed colors.  In general, emission from
GaN:RE is surprisingly strong, being observable with the naked eye at room temperature.  Thermal quenching
of the emitted light is frequently not observed until well above room temperature.  Thus, rare-earth-doping of
GaN represents an interesting alternative to semiconductor alloying (GaN/InN/AlN) for visible light emission
applications and has the additional attractive aspect of strong IR emission for telecommunications and other
applications.  In addition, Er3+ doping of GaN has been shown to produce strong near-IR 1.5 µm emission
suitable for fiber optic telecommunications from the lowest excited state.



Fig. 1 The emission spectrum of several different RE-doped GaN films from the visible
out to the IR wavelengths.  All spectra are normalized to their own highest value and are not
readily comparible to each other in intensity.  The color of the GaN:Tm emission is blue,
GaN:Er is in the green, and both GaN:Eu and GaN:Pr emit in the red.  For the visible region,
all spectra were taken from working ELDs.  In the IR region, the GaN:Tm and the GaN:Er
spectra are from working EL devices while the GaN:Pr is from PL data.

III.  Rare Earth Incorporation

Theoretically, RE intra-4f n atomic transitions are parity forbidden by the Laporte selection rule. RE ions
incorporated into a partially ionic solid frequently substitutionally occupy the cation site.  In the cation site an

uneven ligand crystal field relaxes the selection rule and increases the probability of intra-4f 
n 

transitions9.
These 4f-4f transitions, however, are still not fully allowed, resulting in excited state lifetimes of ~10-3 s for
RE-doped systems.  In wurtzitic GaN, which has a significant component of ionic bonding, the RE3+ ions have
strong optical activity levels, since they are generally substitutionally located on the Ga sub-lattice where the
lack of inversion symmetry produces strong ligand fields thereby increasing the 4f-4f transition probability.
These substitutional RE dopants are therefore likely to be the optically active RE centers observed in
GaN:RE.  A preliminary model of the GaN:RE crystal structure has been developed as part of a collaboration
with scientists at Bell Laboratories and in Europe.  A simple view of the structure is shown in Fig. 2.  A
strongly bonded GaN lattice, in conjunction with substitutional incorporation allows10 unusually high RE
doping concentrations (up to ~3-5 at.%), while preserving the optical activation of RE dopants.  By
comparison, the use of RE3+-doped II-VI semiconductors as emitters and phosphors suffers from a more
weakly bonded lattice, and substitutional location of the RE3+ ions on the 2+ cation sites, which generates
additional electrically-active defects due to lack of charge neutrality.  RBS channeling analysis11 has
confirmed that a great majority (~90%) of the Er ions occupy substitutional sites on the Ga sublattice even at
relatively high concentrations of >0.1 at.%.  The Er-N bond has been measured by EXAFS analysis12 to be
2.17 Å, versus a Ga-N bond length of 1.95 Å.  This unusually short Er-nearest neighbor bond length in GaN is
thought to be due to two major factors: (a) the low 4-fold coordination, compared for example to a 12-fold
coordination in ErSi2; (b) a more polar bond for the Er-N than for Ga-N (due to electronegativity differences),
which helps to energetically compensate for the Ga - Er size mismatch.

Light emission from GaN:RE has been demonstrated via photoluminescence (PL), cathodoluminescence (CL),
and electroluminescence (EL).  The dominant mechanisms for excitation and subsequent relaxation of RE
dopants in GaN are depicted in Fig. 3.  In PL electron-hole pairs are generated by above band-gap photon
absorption, carrier generation is provided by a high energy electron beam in CL, and in EL carrier injection
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occurs by the application of bias voltage to electrical contacts on the GaN layer.

Fig. 2 Preliminary model of the GaN:RE crystal structure.  The Er-N bond has been
measured to be 2.17 Å, versus a Ga-N bond length of 1.95 Å.

Fig. 3 The dominant mechanisms for excitation and subsequent relaxation of RE dopants
in GaN. Shown schematically in the diagrams are the conduction band (CB) and valence band
(VB) edges of GaN and the ground state (GS) and excited state (ES) for RE transitions.

IV.  Electroluminescent Devices
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The form of EL that the GaN:RE ELDs utilize involves impact excitation of RE dopants.  In order for hot
carrier excitation to occur, a high electric field is applied across the GaN layer.  The minimum field strength
required for GaN:RE ELDs is an order of magnitude lower than the 1-2 MV/cm required for II-VI:RE based
ELDs.  This lower field requirement results in light emission at much lower voltages (as low as ~5V)
compared to ELDs based on other semiconductor materials.  In Fig. 4, a low voltage GaN:Er ELD is shown
emitting green light at a bias of 7.5 V, along  with a corresponding graph of current and light intensity vs.
applied voltage.  The device consists of an Er-doped GaN layer grown by MBE on a n+-Si substrate and a
top-side circular (“ring contact” ) transparent bias electrode of In-Sn oxide (ITO).  The combination of this
very simple device structure with the use of Si substrate indicates the potential of this technology for low-
cost displays and for integration with Si technology for drive and control circuitry.

Fig. 4 GaN:Er ELD current and EL intensity as a function of voltage on emitting
electrode.  A thin (~300 nm) GaN layer and n+ Si substrate are used to obtain low-voltage
optical turn-on at 6V.  The inset is a photograph of green emission under the ITO bias
electrode at 7.5 V.

V.  1.5 µm Operation

A second major application of RE-doped GaN is in the area of fiber optic telecommunications, which has
seen explosive growth in terms of both new network installation and network bandwidth.  Fiber optic signals
carry near-IR wavelengths, primarily 1.5 µm and secondarily 1.3 µm, which are the wavelengths of minimum
loss and minimum dispersion in silica fibers.  Fiber optic sources and amplifiers have been developed using
primarily Er3+ and Pr3+ doped in a variety of glasses.  Semiconductor-based equivalents that could take
advantage of semiconductor technology for miniaturization and operation, have suffered from low solubility
and thermal quenching.  Extensive research has been carried out on Er-doped Si 13,14.  The IR radiation is
nearly completely quenched at temperatures around 200 K.  The addition of a significant oxygen concentration
has been shown to improve the Er temperature quenching in silicon15,16 but at the expense of a more
complicated process and degraded electrical properties.  An increasing semiconductor bandgap has been
shown to reduce temperature quenching17.  GaP, which has a larger bandgap than Si, still exhibits18 a
reduction in EL intensity at 300K compared to low temperature values. In Er-doped GaN, the thermal
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quenching is for all practical purposes, no longer a problem.  Fig. 5 shows the temperature dependence of the
1.5 µm electroluminescence of a GaN:Er ELD.  Notice that the EL intensity actually peaks at around 375 K.
Furthermore, allowing for only a 10% degradation of the peak emission value results in an operating
temperature range from 275K to 410K.  This is important especially when considering the temperature
quenching of the IR light emission in other semiconductor hosts.  We, therefore, conclude that GaN has a
significant advantage as a host for erbium compared to GaAs, GaP and Si, which have been extensively
studied for Er-based light emitting applications.  In the case of GaN:Er, it appears that devices could be
developed for semiconductor light sources and amplifiers of 1.5 µm signals.

Fig. 5 Temperature dependence of the 1.5 µm electroluminescence of a GaN:Er ELD.

The shaded region corresponds to 10% degradation of the peak emission (275K to 410K).

VI.  Pure and Mixed Colors

The versatility of the GaN:RE technology is illustrated using the CIE chromaticity diagram shown in Fig. 6.
The triangle in the diagram connects the three primary visible colors emitted by the GaN doped with Tm
(blue), Er (green), and Eu and Pr (red).  The coordinates of this triangle match very well the standard primary
colors of the NTSC.  In addition to primary colors, mixed colors or hues can be obtained by incorporating
multiple REs into the GaN layer, whose combined emission is perceived by the eye as a range of colors
depending on the relative intensities of the constituents.  Examples of mixed colors shown in Fig. 6 are a
combination of Er and Tm yielding the cyan color and Er and Eu producing orange and yellow colors.  The
ability of RE-doped GaN technology to cover the visible color spectrum with both primary and mixed colors
makes it a strong candidate for a variety of display and lighting applications.

In conclusion, on this contract we have developed a very versatile and robust rare-earth-doped GaN
technology for both optical communications and visible displays.  We plan to further develop RE-doped GaN
devices as part of a follow-on contract.  Ultimately, we foresee the insertion of this technology into significant
applications of interest to the Department of Defense and to the commercial market.



Fig. 6 CIE x-y chromaticity diagram showing the location of pure color emission from
GaN ELDs doped with Tm (blue), Er (green), Eu (red) and Pr (red) and of mixed color
emission using GaN:Er+Tm (cyan) and yellow and orange emission from the GaN:Er+Eu
ELD.  Also shown are the coordinates of other commercial LEDs.
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